前沿速递 | NCS 集萃: 2024-12-13 期
总结
1. 纳米粘合剂推进丝网印刷柔性热电材料
Nanobinders advance screen-printed flexible thermoelectrics
『Abstract』Limited flexibility, complex manufacturing processes, high costs, and insufficient performance are major factors restricting the scalability and commercialization of flexible inorganic thermoelectrics for wearable electronics and other high-end cooling applications. We developed an innovative, cost-effective technology that integrates solvothermal, screen-printing, and sintering techniques to produce an inorganic flexible thermoelectric film. Our printable film, comprising Bi2Te3-based nanoplates as highly orientated grains and Te nanorods as “nanobinders,” shows excellent thermoelectric performance for printable films, good flexibility, large-scale manufacturability, and low cost. We constructed a flexible thermoelectric device assembled by printable n-type Bi2Te3-based and p-type Bi0.4Sb1.6Te3 films, which achieved a normalized power density of >3 μW cm-2K-2 , ranking among the highest in screen-printed devices. Moreover, this technology can be extended to other inorganic thermoelectric film systems, such as Ag2Se, showing broad applicability.
评价
2. 自然选择可以决定鹿角珊瑚是否能在预期的气候变化下生存
Natural selection could determine whether Acropora corals persist under expected climate change
『Abstract』Marine heatwaves are intensifying under climate change, exposing populations of reef-building corals to mass mortality and intense selective pressure. It remains unknown whether adaptation can keep pace with warming and maintain reef functioning. We have developed an eco-evolutionary metapopulation model for Acropora , an ecologically important yet thermally sensitive coral taxon. We found that, although corals have some adaptation capacity, they will suffer severe heatwave-induced declines over the coming decades. For a future in which emissions lead to ~3°C of global warming, natural selection could allow populations to persist, albeit in severely depleted states with elevated extinction risk and potential loss of ecosystem functioning. Yet, for thermally sensitive coral populations to thrive beyond 2050, there must be rapid reductions of greenhouse gas emissions that limit global warming to 2°C.
评价
3. 一种长的非编码eRNA形成R环,以形成情绪体验诱导的行为适应
A long noncoding eRNA forms R-loops to shape emotional experience–induced behavioral adaptation
『Abstract』Emotional experiences often evoke neural plasticity that supports adaptive changes in behavior, including maladaptive plasticity associated with mood and substance use disorders. These adaptations are supported in part by experience-dependent activation of immediate-early response genes, such as Npas4 (neuronal PAS domain protein 4). Here we show that a conserved long noncoding enhancer RNA (lnc-eRNA), transcribed from an activity-sensitive enhancer, produces DNA:RNA hybrid R-loop structures that support three-dimensional chromatin looping between enhancer and proximal promoter and rapid Npas4 gene induction. Furthermore, in mouse models, Npas4 lnc-eRNA and its R-loop are required for the development of behavioral adaptations produced by chronic psychosocial stress or cocaine exposure, revealing a potential role for this regulatory mechanism in the transmission of emotional experiences.
评价
4. 大型海洋保护区对围网渔业溢出效益的证据
Evidence of spillover benefits from large-scale marine protected areas to purse seine fisheries
『Abstract』Global tuna fisheries are valued at more than $40 billion, with the majority of this value derived from purse seine fisheries. Recently created large-scale marine protected areas are potentially big enough to protect highly migratory species such as tuna, possibly leading to increases in abundance (a conservation benefit) and consequent spillover near protected area boundaries (an economic benefit). Using publicly available data from nine large-scale marine protected areas across the Pacific and Indian oceans, we find that catch-per-unit-effort in tuna purse seine fisheries has increased by an average of 12 to 18% near protected area boundaries, and this increase declines with distance from the boundaries. The increase is larger for bigeye tuna ( Thunnus obesus ) than for skipjack tuna ( Katsuwonus pelamis ), in line with fisheries science simulation models.
评价
5. 海洋热浪后普通海鸦的灾难性和持续损失
Catastrophic and persistent loss of common murres after a marine heatwave
『Abstract』Recent marine heatwaves have had pervasive effects on marine ecosystems, from declines in primary production to die-offs of top predators. Seabird mortalities are often observed in association with heatwaves, but population impacts are not well understood. In this work, we report the rapid mortality of approximately half of Alaska’s common murre ( Uria aalge ) population in response to an extreme marine heatwave. Between the 7-year period before (2008–2014) and after (2016–2022) the heatwave, murre numbers plummeted 52 to 78% at 13 colonies across two large marine ecosystems. We calculated a loss of 4.00 million common murres, the largest documented wildlife mortality event in the modern era. No evidence of recovery has yet been observed, suggesting that these ecosystems may no longer support historic numbers of seabird top predators.
评价
6. 逆向设计工作流程发现了针对钙钛矿太阳能电池的量身定制的空穴传输材料
Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells
『Abstract』The inverse design of tailored organic molecules for specific optoelectronic devices of high complexity holds an enormous potential but has not yet been realized. Current models rely on large data sets that generally do not exist for specialized research fields. We demonstrate a closed-loop workflow that combines high-throughput synthesis of organic semiconductors to create large datasets and Bayesian optimization to discover new hole-transporting materials with tailored properties for solar cell applications. The predictive models were based on molecular descriptors that allowed us to link the structure of these materials to their performance. A series of high-performance molecules were identified from minimal suggestions and achieved up to 26.2% (certified 25.9%) power conversion efficiency in perovskite solar cells.
评价
7. 损伤诱导的间质-上皮细胞生态位协调肺部的再生反应
An injury-induced mesenchymal-epithelial cell niche coordinates regenerative responses in the lung
『Abstract』Severe lung injury causes airway basal stem cells to migrate and outcompete alveolar stem cells, resulting in dysplastic repair. We found that this “stem cell collision” generates an injury-induced tissue niche containing keratin 5 epithelial cells and plastic Pdgfra mesenchymal cells. Single-cell analysis revealed that the injury-induced niche is governed by mesenchymal proliferation and Notch signaling, which suppressed Wnt/Fgf signaling in the injured niche. Conversely, loss of Notch signaling rewired alveolar signaling patterns to promote functional regeneration and gas exchange. Signaling patterns in injury-induced niches can differentiate fibrotic from degenerative human lung diseases through altering the direction of Wnt/Fgf signaling. Thus, we have identified an injury-induced niche in the lung with the ability to discriminate human lung disease phenotypes.
评价
8. 哺乳动物细胞中的合成蛋白质水平神经网络
A synthetic protein-level neural network in mammalian cells
『Abstract』Artificial neural networks provide a powerful paradigm for nonbiological information processing. To understand whether similar principles could enable computation within living cells, we combined de novo–designed protein heterodimers and engineered viral proteases to implement a synthetic protein circuit that performs winner-take-all neural network classification. This “perceptein” circuit combines weighted input summation through reversible binding interactions with self-activation and mutual inhibition through irreversible proteolytic cleavage. These interactions collectively generate a large repertoire of distinct protein species stemming from up to eight coexpressed starting protein species. The complete system achieves multi-output signal classification with tunable decision boundaries in mammalian cells and can be used to conditionally control cell death. These results demonstrate how engineered protein-based networks can enable programmable signal classification in living cells.
评价
9. 自体DNA动员和增殖加速了细菌天然产物的发现
Autologous DNA mobilization and multiplication expedite natural products discovery from bacteria
『Abstract』The transmission of antibiotic-resistance genes, comprising mobilization and relocation events, orchestrates the dissemination of antimicrobial resistance. Inspired by this evolutionarily successful paradigm, we developed ACTIMOT, a CRISPR-Cas9–based approach to unlock the vast chemical diversity concealed within bacterial genomes. ACTIMOT enables the efficient mobilization and relocation of large DNA fragments from the chromosome to replicative plasmids within the same bacterial cell. ACTIMOT circumvents the limitations of traditional molecular cloning methods involving handling and replicating large pieces of genomic DNA. Using ACTIMOT, we mobilized and activated four cryptic biosynthetic gene clusters from Streptomyces , leading to the discovery of 39 compounds across four distinct classes. This work highlights the potential of ACTIMOT for accelerating the exploration of biosynthetic pathways and the discovery of natural products.
评价
10. 性选择促进了家燕的生殖隔离
Sexual selection promotes reproductive isolation in barn swallows
『Abstract』Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome. Sexual trait loci exhibit signatures of divergent selection in geographic isolation and barriers to gene flow in secondary contact. Linkage disequilibrium between these genes has been maintained by selection in hybrid zones beyond what would be expected under admixture alone. Our findings reveal that selection on coupled sexual trait loci promotes reproductive isolation, providing key empirical evidence for the role of sexual selection in speciation.
评价
11. 在克隆细菌宿主上稳定维持着多样化的噬菌体群落
Diverse phage communities are maintained stably on a clonal bacterial host
『Abstract』Bacteriophages are the most abundant and phylogenetically diverse biological entities on Earth, yet the ecological mechanisms that sustain this extraordinary diversity remain unclear. In this study, we discovered that phage diversity consistently outstripped the diversity of their bacterial hosts under simple experimental conditions. We assembled and passaged dozens of diverse phage communities on a single, nonevolving strain of Escherichia coli until the phage communities reached equilibrium. In all cases, we found that two or more phage species coexisted stably, despite competition for a single, clonal host population. Phage coexistence was supported through host phenotypic heterogeneity, whereby bacterial cells adopting different growth phenotypes served as niches for different phage species. Our experiments reveal that a rich community ecology of bacteriophages can emerge on a single bacterial host.
评价
12. 尼安德特人的祖先随着时间的推移:从古代和现代人类的基因组中获得的见解
Neanderthal ancestry through time: Insights from genomes of ancient and present-day humans
『Abstract』Gene flow from Neanderthals has shaped genetic and phenotypic variation in modern humans. We generated a catalog of Neanderthal ancestry segments in more than 300 genomes spanning the past 50,000 years. We examined how Neanderthal ancestry is shared among individuals over time. Our analysis revealed that the vast majority of Neanderthal gene flow is attributable to a single, shared extended period of gene flow that occurred between 50,500 to 43,500 years ago, as evidenced by ancestry correlation, colocalization of Neanderthal segments across individuals, and divergence from the sequenced Neanderthals. Most natural selection—positive and negative—on Neanderthal variants occurred rapidly after the gene flow. Our findings provide new insights into how contact with Neanderthals shaped modern human origins and adaptation.
评价
13. SWOT任务中的深海海洋构造
Abyssal marine tectonics from the SWOT mission
『Abstract』The global ocean covers 71% of Earth’s surface, yet the seafloor is poorly charted compared with land, the Moon, Mars, and Venus. Traditional ocean mapping uses ship-based soundings and nadir satellite radar altimetry—one limited in spatial coverage and the other in spatial resolution. The joint NASA–CNES (Centre National d’Etudes Spatiales) Surface Water and Ocean Topography (SWOT) mission uses phase-coherent, wide-swath radar altimetry to measure ocean surface heights at high precision. We show that 1 year of SWOT data offers more detailed information than 30 years of satellite nadir altimetry in marine gravity, enabling the detection of intricate seafloor structures at 8-kilometer spatial resolution. With the mission still ongoing, SWOT promises critical insights for bathymetric charting, tectonic plate reconstruction, underwater navigation, and deep ocean mixing.
评价
14. 类日恒星大约每世纪产生一次超级耀斑
Sun-like stars produce superflares roughly once per century
『Abstract』Stellar superflares are energetic outbursts of electromagnetic radiation that are similar to solar flares but release more energy, up to 10 erg on main-sequence stars. It is unknown whether the Sun can generate superflares and, if so, how often they might occur. We used photometry from the Kepler space observatory to investigate superflares on other stars with Sun-like fundamental parameters. We identified 2889 superflares on 2527 Sun-like stars, out of 56,450 observed. This detection rate indicates that superflares with energies >10 erg occur roughly once per century on stars with Sun-like temperature and variability. The resulting stellar superflare frequency-energy distribution is consistent with an extrapolation of the Sun’s flare distribution to higher energies, so we suggest that both are generated by the same physical mechanism.
评价
15. 受头足类动物启发的胃肠给药喷射装置
Cephalopod-inspired jetting devices for gastrointestinal drug delivery
『Abstract』Needle-based injections currently enable the administration of a wide range of biomacromolecule therapies across the body, including the gastrointestinal tract , through recent developments in ingestible robotic devices . However, needles generally require training, sharps management and disposal, and pose challenges for autonomous ingestible systems. Here, inspired by the jetting systems of cephalopods, we have developed and evaluated microjet delivery systems that can deliver jets in axial and radial directions into tissue, making them suitable for tubular and globular segments of the gastrointestinal tract. Furthermore, they are implemented in both tethered and ingestible formats, facilitating endoscopic applications or patient self-dosing. Our study identified suitable pressure and nozzle dimensions for different segments of the gastrointestinal tract and applied microjets in a variety of devices that support delivery across the various anatomic segments of the gastrointestinal tract. We characterized the ability of these systems to administer macromolecules, including insulin, a glucagon-like peptide-1 (GLP1) analogue and a small interfering RNA (siRNA) in large animal models, achieving exposure levels similar to those achieved with subcutaneous delivery. This research provides key insights into jetting design parameters for gastrointestinal administration, substantially broadening the possibilities for future endoscopic and ingestible drug delivery devices.
评价
16. 化学反应的持续集体分析
Continuous collective analysis of chemical reactions
『Abstract』The automated synthesis of small organic molecules from modular building blocks has the potential to transform our capacity to create medicines and materials . Disruptive acceleration of this molecule-building strategy broadly unlocks its functional potential and requires the integration of many new assembly chemistries. Although recent advances in high-throughput chemistry can speed up the development of appropriate synthetic methods, for example, in selecting appropriate chemical reaction conditions from the vast range of potential options, equivalent high-throughput analytical methods are needed. Here we report a streamlined approach for the rapid, quantitative analysis of chemical reactions by mass spectrometry. The intrinsic fragmentation features of chemical building blocks generalize the analyses of chemical reactions, allowing sub-second readouts of reaction outcomes. Central to this advance was identifying that starting material fragmentation patterns function as universal barcodes for downstream product analysis by mass spectrometry. Combining these features with acoustic droplet ejection mass spectrometry we could eliminate slow chromatographic steps and continuously evaluate chemical reactions in multiplexed formats. This enabled the assignment of reaction conditions to molecules derived from ultrahigh-throughput chemical synthesis experiments. More generally, these results indicate that fragmentation features inherent to chemical synthesis can empower rapid data-rich experimentation.
评价
17. 人类复制起源的多种许可机制
Multiple mechanisms for licensing human replication origins
『Abstract』Loading of replicative helicases is obligatory for the assembly of DNA replication machineries. The eukaryotic MCM2–7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head double hexamer to license replication origins. Although extensively studied in budding yeast , the mechanisms of origin licensing in multicellular eukaryotes remain poorly defined. Here we use biochemical reconstitution and electron microscopy to reconstruct the human MCM loading pathway. We find that unlike in yeast, the ORC6 subunit of the ORC is not essential for—but enhances—human MCM loading. Electron microscopy analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of ORC6, including a DNA-loaded, closed-ring MCM single hexamer intermediate that can mature into a head-to-head double hexamer through multiple mechanisms. ORC6 and ORC3 facilitate the recruitment of the ORC to the dimerization interface of the first hexamer into MCM–ORC (MO) complexes that are distinct from the yeast MO complex and may orient the ORC for second MCM hexamer loading. Additionally, MCM double hexamer formation can proceed through dimerization of independently loaded MCM single hexamers, promoted by a propensity of human MCM2–7 hexamers to self-dimerize. This flexibility in human MCM loading may provide resilience against cellular replication stress, and the reconstitution system will enable studies addressing outstanding questions regarding DNA replication initiation and replication-coupled events in the future.
评价
18. 全球大范围植被对每日降水变化的敏感性
Large global-scale vegetation sensitivity to daily rainfall variability
『Abstract』Rainfall events are globally becoming less frequent but more intense under a changing climate, thereby shifting climatic conditions for terrestrial vegetation independent of annual rainfall totals . However, it remains uncertain how changes in daily rainfall variability are affecting global vegetation photosynthesis and growth . Here we use several satellite-based vegetation indices and field observations indicative of photosynthesis and growth, and find that global annual-scale vegetation indices are sensitive to the daily frequency and intensity of rainfall, independent of the total amount of rainfall per year. Specifically, we find that satellite-based vegetation indices are sensitive to daily rainfall variability across 42 per cent of the vegetated land surfaces. On average, the sensitivity of vegetation to daily rainfall variability is almost as large (95 per cent) as the sensitivity of vegetation to annual rainfall totals. Moreover, we find that wet-day frequency and intensity are projected to change with similar magnitudes and spatial extents as annual rainfall changes. Overall, our findings suggest that daily rainfall variability and its trends are affecting global vegetation photosynthesis, with potential implications for the carbon cycle and food security.
评价
19. 用人类蛋白质可视化的MCM双六聚体加载
MCM double hexamer loading visualized with human proteins
『Abstract』Eukaryotic DNA replication begins with the loading of the MCM replicative DNA helicase as a head-to-head double hexamer at origins of DNA replication . Our current understanding of how the double hexamer is assembled by the origin recognition complex (ORC), CDC6 and CDT1 comes mostly from budding yeast. Here we characterize human double hexamer (hDH) loading using biochemical reconstitution and cryo-electron microscopy with purified proteins. We show that the human double hexamer engages DNA differently from the yeast double hexamer (yDH), and generates approximately five base pairs of underwound DNA at the interface between hexamers, as seen in hDH isolated from cells . We identify several differences from the yeast double hexamer in the order of factor recruitment and dependencies during hDH assembly. Unlike in yeast , the ORC6 subunit of the ORC is not essential for initial MCM recruitment or hDH loading, but contributes to an alternative hDH assembly pathway that requires an intrinsically disordered region in ORC1, which may work through a MCM–ORC intermediate. Our work presents a detailed view of how double hexamers are assembled in an organism that uses sequence-independent replication origins, provides further evidence for diversity in eukaryotic double hexamer assembly mechanisms , and represents a first step towards reconstitution of DNA replication initiation with purified human proteins.
评价
20. 消化物和食物网记录了恐龙霸权的到来
Digestive contents and food webs record the advent of dinosaur supremacy
『Abstract』The early radiation of dinosaurs remains a complex and poorly understood evolutionary event . Here we use hundreds of fossils with direct evidence of feeding to compare trophic dynamics across five vertebrate assemblages that record this event in the Triassic–Jurassic succession of the Polish Basin (central Europe). Bromalites, fossil digestive products, increase in size and diversity across the interval, indicating the emergence of larger dinosaur faunas with new feeding patterns. Well-preserved food residues and bromalite-taxon associations enable broad inferences of trophic interactions. Our results, integrated with climate and plant data, indicate a stepwise increase of dinosaur diversity and ecospace occupancy in the area. This involved (1) a replacement of non-dinosaur guild members by opportunistic and omnivorous dinosaur precursors, followed by (2) the emergence of insect and fish-eating theropods and small omnivorous dinosaurs. Climate change in the latest Triassic resulted in substantial vegetation changes that paved the way for ((3) and (4)) an expansion of herbivore ecospace and the replacement of pseudosuchian and therapsid herbivores by large sauropodomorphs and early ornithischians that ingested food of a broader range, even including burnt plants. Finally, (5) theropods rapidly evolved and developed enormous sizes in response to the appearance of the new herbivore guild. We suggest that the processes shown by the Polish data may explain global patterns, shedding new light on the environmentally governed emergence of dinosaur dominance and gigantism that endured until the end-Cretaceous mass extinction.
评价
21. 在不断变化的海洋中,现代浮游有孔虫的迁移是不够的
Migrating is not enough for modern planktonic foraminifera in a changing ocean
『Abstract』Rising carbon dioxide emissions are provoking ocean warming and acidification , altering plankton habitats and threatening calcifying organisms , such as the planktonic foraminifera (PF). Whether the PF can cope with these unprecedented rates of environmental change, through lateral migrations and vertical displacements, is unresolved. Here we show, using data collected over the course of a century as FORCIS global census counts, that the PF are displaying evident poleward migratory behaviours, increasing their diversity at mid- to high latitudes and, for some species, descending in the water column. Overall foraminiferal abundances have decreased by 24.2 ± 0.1% over the past eight decades. Beyond lateral migrations , our study has uncovered intricate vertical migration patterns among foraminiferal species, presenting a nuanced understanding of their adaptive strategies. In the temperature and calcite saturation states projected for 2050 and 2100, low-latitude foraminiferal species will face physicochemical environments that surpass their current ecological tolerances. These species may replace higher-latitude species through poleward shifts, which would reduce low-latitude foraminiferal diversity. Our insights into the adaptation of foraminifera during the Anthropocene suggest that migration will not be enough to ensure survival. This underscores the urgent need for us to understand how the interplay of climate change, ocean acidification and other stressors will impact the survivability of large parts of the marine realm.
评价
22. 检查常见变异在罕见神经发育疾病中的作用
Examining the role of common variants in rare neurodevelopmental conditions
『Abstract』Although rare neurodevelopmental conditions have a large Mendelian component , common genetic variants also contribute to risk . However, little is known about how this polygenic risk is distributed among patients with these conditions and their parents nor its interplay with rare variants. It is also unclear whether polygenic background affects risk directly through alleles transmitted from parents to children, or whether indirect genetic effects mediated through the family environment also play a role. Here we addressed these questions using genetic data from 11,573 patients with rare neurodevelopmental conditions, 9,128 of their parents and 26,869 controls. Common variants explained around 10% of variance in risk. Patients with a monogenic diagnosis had significantly less polygenic risk than those without, supporting a liability threshold model . A polygenic score for neurodevelopmental conditions showed only a direct genetic effect. By contrast, polygenic scores for educational attainment and cognitive performance showed no direct genetic effect, but the non-transmitted alleles in the parents were correlated with the child’s risk, potentially due to indirect genetic effects and/or parental assortment for these traits . Indeed, as expected under parental assortment, we show that common variant predisposition for neurodevelopmental conditions is correlated with the rare variant component of risk. These findings indicate that future studies should investigate the possible role and nature of indirect genetic effects on rare neurodevelopmental conditions, and consider the contribution of common and rare variants simultaneously when studying cognition-related phenotypes.
评价
23. 钙调神经磷酸酶和PKA之间的突触后竞争调节哺乳动物的睡眠-觉醒周期
Postsynaptic competition between calcineurin and PKA regulates mammalian sleep–wake cycles
『Abstract』The phosphorylation of synaptic proteins is a significant biochemical reaction that controls the sleep–wake cycle in mammals . Protein phosphorylation in vivo is reversibly regulated by kinases and phosphatases. In this study, we investigate a pair of kinases and phosphatases that reciprocally regulate sleep duration. First, we perform a comprehensive screen of protein kinase A (PKA) and phosphoprotein phosphatase (PPP) family genes by generating 40 gene knockout mouse lines using prenatal and postnatal CRISPR targeting. We identify a regulatory subunit of PKA ( Prkar2b ), a regulatory subunit of protein phosphatase 1 (PP1; Pppr1r9b ) and catalytic and regulatory subunits of calcineurin (also known as PP2B) ( Ppp3ca and Ppp3r1 ) as sleep control genes. Using adeno-associated virus (AAV)-mediated stimulation of PKA and PP1–calcineurin activities, we show that PKA is a wake-promoting kinase, whereas PP1 and calcineurin function as sleep-promoting phosphatases. The importance of these phosphatases in sleep regulation is supported by the marked changes in sleep duration associated with their increased and decreased activities, ranging from approximately 17.3 h per day (PP1 expression) to 4.3 h per day (postnatal CRISPR targeting of calcineurin). Localization signals to the excitatory post-synapse are necessary for these phosphatases to exert their sleep-promoting effects. Furthermore, the wake-promoting effect of PKA localized to the excitatory post-synapse negated the sleep-promoting effect of PP1–calcineurin. These findings indicate that PKA and PP1–calcineurin have competing functions in sleep regulation at excitatory post-synapses.
评价
24. 一种具有原子有序和相互连接的中孔通道的稳定沸石
A stable zeolite with atomically ordered and interconnected mesopore channel
『Abstract』Zeolites are crystalline microporous materials constructed by corner-sharing tetrahedra (SiO4 and AlO4 ), with many industrial applications as ion exchangers, adsorbents and heterogeneous catalysts . However, the presence of micropores impedes the use of zeolites in areas dealing with bulky substrates. Introducing extrinsic mesopores, that is, intercrystal/intracrystal mesopores, in zeolites is a solution to overcome the diffusion barrier . Still, those extrinsic mesopores are generally disordered and non-uniform; moreover, acidity and crystallinity are always, to some extent, impaired. Thus, synthesizing thermally stable zeolites with intrinsic mesopores that are of uniform size and crystallographically connected with micropores, denoted here as intrinsic mesoporous zeolite, is highly desired but still not achieved. Here we report ZMQ-1 (Zeolitic Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, no. 1), an aluminosilicate zeolite with an intersecting intrinsic meso-microporous channel system delimited by 28 × 10 × 10-rings, in which the 28-ring has a free diameter of 22.76 Å × 11.83 Å, which reaches the mesopore domain. ZMQ-1 has high thermal and hydrothermal stability with tunable framework Si/Al molar ratios. ZMQ-1 is the first aluminosilicate zeolite with an intrinsic meso-microporous channel system. The Bronsted acidity of ZMQ-1 imparts high activity and unique selectivity in the catalytic cracking of heavy oil. The position of the organic structure-directing agent (OSDA) used for ZMQ-1 synthesis was determined from three-dimensional electron diffraction (3D ED) data, which shows the unique structure-directing role of the OSDA in the formation of the intrinsic meso-microporous zeolite. This provides an incentive for preparing other stable mesopore-containing zeolites.
评价
25. 在未来的变暖过程中,过去的有孔虫适应能力是有限的
Past foraminiferal acclimatization capacity is limited during future warming
『Abstract』Climate change affects marine organisms, causing migrations, biomass reduction and extinctions . However, the abilities of marine species to adapt to these changes remain poorly constrained on both geological and anthropogenic timescales. Here we combine the fossil record and a global trait-based plankton model to study optimal temperatures of marine calcifying zooplankton (foraminifera, Rhizaria) through time. The results show that spinose foraminifera with algal symbionts acclimatized to deglacial warming at the end of the Last Glacial Maximum (LGM, 19–21 thousand years ago, ka), whereas foraminifera without symbionts (non-spinose or spinose) kept the same thermal preference and migrated polewards. However, when forcing the trait-based plankton model with rapid transient warming over the coming century (1.5 ℃, 2 ℃, 3 ℃ and 4 ℃ relative to pre-industrial baseline), the model suggests that the acclimatization capacities of all ecogroups are limited and insufficient to track warming rates. Therefore, foraminifera are projected to migrate polewards and reduce their global carbon biomass by 5.7–15.1% (depending on the warming) by 2100 relative to 1900–1950. Our study highlights the different challenges posed by anthropogenic and geological warming for marine plankton and their ecosystem functions.
评价
26. 在晚期乳腺癌中早期与延迟使用CDK4/6抑制剂的比较
Early versus deferred use of CDK4/6 inhibitors in advanced breast cancer
『Abstract』Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in combination with endocrine therapy improve the outcomes of patients with hormone-receptor (HR)-positive, HER2-negative advanced breast cancer and can be used early as first-line treatment or deferred to second-line treatment . Randomized data comparing the use of CDK4/6i in the first- and second-line setting are lacking. The phase 3 SONIA trial (NCT03425838) randomized 1,050 patients who had not received previous therapy for advanced breast cancer to receive CDK4/6i in the first- or second-line setting . All of the patients received the same endocrine therapy, consisting of an aromatase inhibitor for first-line treatment and fulvestrant for second-line treatment. The primary end point was defined as the time from randomization to disease progression after second-line treatment (progression-free survival 2 (PFS2)). We observed no statistically significant benefit for the use of CDK4/6i as a first-line compared with second-line treatment (median, 31.0 versus 26.8 months, respectively; hazard ratio = 0.87; 95% confidence interval = 0.74–1.03; P = 0.10). The health-related quality of life was similar in both groups. First-line CDK4/6i use was associated with a longer CDK4/6i treatment duration compared with second-line use (median CDK4/6i treatment duration of 24.6 versus 8.1 months, respectively) and more grade ≥3 adverse events (2,763 versus 1,591, respectively). These data challenge the need for first-line use of a CDK4/6i in all patients.
评价
27. 牺牲毛细管泵来设计多尺度生物形态
Sacrificial capillary pumps to engineer multiscalar biological forms
『Abstract』Natural tissues are composed of diverse cells and extracellular materials whose arrangements across several length scales—from subcellular lengths (micrometre) to the organ scale (centimetre)—regulate biological functions. Tissue-fabrication methods have progressed to large constructs, for example, through stereolithography and nozzle-based bioprinting , and subcellular resolution through subtractive photoablation . However, additive bioprinting struggles with sub-nozzle/voxel features and photoablation is restricted to small volumes by prohibitive heat generation and time . Building across several length scales with temperature-sensitive, water-based soft biological matter has emerged as a critical challenge, leaving large classes of biological motifs—such as multiscalar vascular trees with varying calibres—inaccessible with present technologies . Here we use gallium-based engineered sacrificial capillary pumps for evacuation (ESCAPE) during moulding to generate multiscalar structures in soft natural hydrogels, achieving both cellular-scale (<10 µm) and millimetre-scale features. Decoupling the biomaterial of interest from the process of constructing the geometry allows non-biocompatible tools to create the initial geometry. As an exemplar, we fabricated branched, cell-laden vascular trees in collagen, spanning approximately 300-µm arterioles down to the microvasculature (roughly ten times smaller). The same approach can micropattern the inner surface of vascular walls with topographical cues to orient cells in 3D and engineer fine structures such as vascular malformations. ESCAPE moulding enables the fabrication of multiscalar forms in soft biomaterials, paving the way for a wide range of tissue architectures that were previously inaccessible in vitro.
评价
28. 胶毒是一种针对胶质母细胞瘤的烟酰胺类前体药物
Gliocidin is a nicotinamide-mimetic prodrug that targets glioblastoma
『Abstract』Glioblastoma is incurable and in urgent need of improved therapeutics . Here we identify a small compound, gliocidin, that kills glioblastoma cells while sparing non-tumour replicative cells. Gliocidin activity targets a de novo purine synthesis vulnerability in glioblastoma through indirect inhibition of inosine monophosphate dehydrogenase 2 (IMPDH2). IMPDH2 blockade reduces intracellular guanine nucleotide levels, causing nucleotide imbalance, replication stress and tumour cell death . Gliocidin is a prodrug that is anabolized into its tumoricidal metabolite, gliocidin–adenine dinucleotide (GAD), by the enzyme nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) of the NAD salvage pathway. The cryo-electron microscopy structure of GAD together with IMPDH2 demonstrates its entry, deformation and blockade of the NAD pocket . In vivo, gliocidin penetrates the blood–brain barrier and extends the survival of mice with orthotopic glioblastoma. The DNA alkylating agent temozolomide induces Nmnat1 expression, causing synergistic tumour cell killing and additional survival benefit in orthotopic patient-derived xenograft models. This study brings gliocidin to light as a prodrug with the potential to improve the survival of patients with glioblastoma.
评价
29. 间歇速率编码和特定线索的集成支持工作记忆
Intermittent rate coding and cue-specific ensembles support working memory
『Abstract』Persistent, memorandum-specific neuronal spiking activity has long been hypothesized to underlie working memory . However, emerging evidence suggests a potential role for ‘activity-silent’ synaptic mechanisms . This issue remains controversial because evidence for either view has largely relied either on datasets that fail to capture single-trial population dynamics or on indirect measures of neuronal spiking. We addressed this controversy by examining the dynamics of mnemonic information on single trials obtained from large, local populations of lateral prefrontal neurons recorded simultaneously in monkeys performing a working memory task. Here we show that mnemonic information does not persist in the spiking activity of neuronal populations during memory delays, but instead alternates between coordinated ‘On’ and ‘Off’ states. At the level of single neurons, Off states are driven by both a loss of selectivity for memoranda and a return of firing rates to spontaneous levels. Further exploiting the large-scale recordings used here, we show that mnemonic information is available in the patterns of functional connections among neuronal ensembles during Off states. Our results suggest that intermittent periods of memorandum-specific spiking coexist with synaptic mechanisms to support working memory.
评价
30. 在6亿年前的宇宙中,星团形成了一个低质量星系
Formation of a low-mass galaxy from star clusters in a 600-million-year-old Universe
『Abstract』The most distant galaxies detected were seen when the Universe was a scant 5% of its current age. At these times, progenitors of galaxies such as the Milky Way were about 10,000 times less massive. Using the James Webb Space Telescope (JWST) combined with magnification from gravitational lensing, these low-mass galaxies can not only be detected but also be studied in detail. Here we present JWST observations of a strongly lensed galaxy at z spec = 8.296 ± 0.001, showing massive star clusters (the Firefly Sparkle) cocooned in a diffuse arc in the Canadian Unbiased Cluster Survey (CANUCS) . The Firefly Sparkle exhibits traits of a young, gas-rich galaxy in its early formation stage. The mass of the galaxy is concentrated in 10 star clusters (49–57% of total mass), with individual masses ranging from 105M ⊙ to 106M ⊙. These unresolved clusters have high surface densities (>103 M⊙pc-2 ), exceeding those of Milky Way globular clusters and young star clusters in nearby galaxies. The central cluster shows a nebular-dominated spectrum, low metallicity, high gas density and high electron temperature, hinting at a top-heavy initial mass function. These observations provide our first spectrophotometric view of a typical galaxy in its early stages, in a 600-million-year-old Universe.
评价
31. 利用脉冲整形在极紫外领域进行强场量子控制
Strong-field quantum control in the extreme ultraviolet domain using pulse shaping
『Abstract』Tailored light–matter interactions in the strong coupling regime enable the manipulation and control of quantum systems with up to unit efficiency , with applications ranging from quantum information to photochemistry . Although strong light–matter interactions are readily induced at the valence electron level using long-wavelength radiation , comparable phenomena have been only recently observed with short wavelengths, accessing highly excited multi-electron and inner-shell electron states . However, the quantum control of strong-field processes at short wavelengths has not been possible, so far, because of the lack of pulse-shaping technologies in the extreme ultraviolet (XUV) and X-ray domain. Here, exploiting pulse shaping of the seeded free-electron laser (FEL) FERMI, we demonstrate the strong-field quantum control of ultrafast Rabi dynamics in helium atoms with high fidelity. Our approach reveals a strong dressing of the ionization continuum, otherwise elusive to experimental observables. The latter is exploited to achieve control of the total ionization rate, with prospective applications in many XUV and soft X-ray experiments. Leveraging recent advances in intense few-femtosecond to attosecond XUV to soft X-ray light sources, our results open an avenue to the efficient manipulation and selective control of core electron processes and electron correlation phenomena in real time.
评价
32. 趋同持久细胞状态的鉴定和遗传剖析
Identification and genetic dissection of convergent persister cell states
『Abstract』Persister cells, rare phenotypic variants that survive normally lethal levels of antibiotics, present a major barrier to clearing bacterial infections . However, understanding the precise physiological state and genetic basis of persister formation has been a longstanding challenge. Here we generated a high-resolution single-cell RNA atlas of Escherichia coli growth transitions, which revealed that persisters from diverse genetic and physiological models converge to transcriptional states that are distinct from standard growth phases and instead exhibit a dominant signature of translational deficiency. We then used ultra-dense CRISPR interference to determine how every E. coli gene contributes to persister formation across genetic models. Among critical genes with large effects, we found lon , which encodes a highly conserved protease , and yqgE , a poorly characterized gene whose product strongly modulates the duration of post-starvation dormancy and persistence. Our work reveals key physiologic and genetic factors that underlie starvation-triggered persistence, a critical step towards targeting persisters in recalcitrant bacterial infections.
评价
33. 组织间隙是布氏锥虫抗原多样性的储存库
Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei
『Abstract』The protozoan parasite Trypanosoma brucei evades clearance by the host immune system through antigenic variation of its dense variant surface glycoprotein (VSG) coat, periodically ‘switching’ expression of the VSG using a large genomic repertoire of VSG-encoding genes . Recent studies of antigenic variation in vivo have focused near exclusively on parasites in the bloodstream , but research has shown that many, if not most, parasites reside in the interstitial spaces of tissues . We sought to explore the dynamics of antigenic variation in extravascular parasite populations using VSG-seq , a high-throughput sequencing approach for profiling VSGs expressed in populations of T. brucei . Here we show that tissues, not the blood, are the primary reservoir of antigenic diversity during both needle- and tsetse bite-initiated T. brucei infections, with more than 75% of VSGs found exclusively within extravascular spaces. We found that this increased diversity is correlated with slower parasite clearance in tissue spaces. Together, these data support a model in which the slower immune response in extravascular spaces provides more time to generate the antigenic diversity needed to maintain a chronic infection. Our findings reveal the important role that extravascular spaces can have in pathogen diversification.
评价
34. 肠道的空间限制免疫和微生物群驱动的适应性
Spatially restricted immune and microbiota-driven adaptation of the gut
『Abstract』The intestine is characterized by an environment in which host requirements for nutrient and water absorption are consequently paired with the requirements to establish tolerance to the outside environment. To better understand how the intestine functions in health and disease, large efforts have been made to characterize the identity and composition of cells from different intestinal regions . However, the robustness, nature of adaptability and extent of resilience of the transcriptional landscape and cellular underpinning of the intestine in space are still poorly understood. Here we generated an integrated resource of the spatial and cellular landscape of the murine intestine in the steady and perturbed states. Leveraging these data, we demonstrated that the spatial landscape of the intestine was robust to the influence of the microbiota and was adaptable in a spatially restricted manner. Deploying a model of spatiotemporal acute inflammation, we demonstrated that both robust and adaptable features of the landscape were resilient. Moreover, highlighting the physiological relevance and value of our dataset, we identified a region of the middle colon characterized by an immune-driven multicellular spatial adaptation of structural cells to the microbiota. Our results demonstrate that intestinal regionalization is characterized by robust and resilient structural cell states and that the intestine can adapt to environmental stress in a spatially controlled manner through the crosstalk between immunity and structural cell homeostasis.
评价
35. MnTe中反磁性的纳米级成像和控制
Nanoscale imaging and control of altermagnetism in MnTe
『Abstract』Nanoscale detection and control of the magnetic order underpins a spectrum of condensed-matter research and device functionalities involving magnetism. The key principle involved is the breaking of time-reversal symmetry, which in ferromagnets is generated by an internal magnetization. However, the presence of a net magnetization limits device scalability and compatibility with phases, such as superconductors and topological insulators. Recently, altermagnetism has been proposed as a solution to these restrictions, as it shares the enabling time-reversal-symmetry-breaking characteristic of ferromagnetism, combined with the antiferromagnetic-like vanishing net magnetization . So far, altermagnetic ordering has been inferred from spatially averaged probes . Here we demonstrate nanoscale imaging of altermagnetic states from 100-nanometre-scale vortices and domain walls to 10-micrometre - scale single-domain states in manganese telluride (MnTe) . We combine the time-reversal-symmetry-breaking sensitivity of X-ray magnetic circular dichroism with magnetic linear dichroism and photoemission electron microscopy to achieve maps of the local altermagnetic ordering vector. A variety of spin configurations are imposed using microstructure patterning and thermal cycling in magnetic fields. The demonstrated detection and controlled formation of altermagnetic spin configurations paves the way for future experimental studies across the theoretically predicted research landscape of altermagnetism, including unconventional spin-polarization phenomena, the interplay of altermagnetism with superconducting and topological phases, and highly scalable digital and neuromorphic spintronic devices .
评价
36. 减肥后脂肪组织保留了肥胖的表观遗传记忆
Adipose tissue retains an epigenetic memory of obesity after weight loss
『Abstract』Reducing body weight to improve metabolic health and related comorbidities is a primary goal in treating obesity . However, maintaining weight loss is a considerable challenge, especially as the body seems to retain an obesogenic memory that defends against body weight changes . Overcoming this barrier for long-term treatment success is difficult because the molecular mechanisms underpinning this phenomenon remain largely unknown. Here, by using single-nucleus RNA sequencing, we show that both human and mouse adipose tissues retain cellular transcriptional changes after appreciable weight loss. Furthermore, we find persistent obesity-induced alterations in the epigenome of mouse adipocytes that negatively affect their function and response to metabolic stimuli. Mice carrying this obesogenic memory show accelerated rebound weight gain, and the epigenetic memory can explain future transcriptional deregulation in adipocytes in response to further high-fat diet feeding. In summary, our findings indicate the existence of an obesogenic memory, largely on the basis of stable epigenetic changes, in mouse adipocytes and probably other cell types. These changes seem to prime cells for pathological responses in an obesogenic environment, contributing to the problematic ‘yo-yo’ effect often seen with dieting. Targeting these changes in the future could improve long-term weight management and health outcomes.
评价
37. 晶体和拓扑缺陷的X射线线性二色断层扫描
X-ray linear dichroic tomography of crystallographic and topological defects
『Abstract』The functionality of materials is determined by their composition and microstructure, that is, the distribution and orientation of crystalline grains, grain boundaries and the defects within them . Until now, characterization techniques that map the distribution of grains, their orientation and the presence of defects have been limited to surface investigations, to spatial resolutions of a few hundred nanometres or to systems of thickness around 100 nm, thus requiring destructive sample preparation for measurements and preventing the study of system-representative volumes or the investigation of materials under operational conditions . Here we present X-ray linear dichroic orientation tomography (XL-DOT), a quantitative, non-invasive technique that allows for an intragranular and intergranular characterization of extended polycrystalline and non-crystalline materials in three dimensions. We present the detailed characterization of a polycrystalline sample of vanadium pentoxide (V2O5 ), a key catalyst in the production of sulfuric acid . We determine the nanoscale composition, microstructure and crystal orientation throughout the polycrystalline sample with 73 nm spatial resolution. We identify and characterize grains, as well as twist, tilt and twin grain boundaries. We further observe the creation and annihilation of topological defects promoted by the presence of volume crystallographic defects. The non-destructive and spectroscopic nature of our method opens the door to operando combined chemical and microstructural investigations of functional materials, including energy, mechanical and quantum materials.
评价
38. 魔角扭曲双层石墨烯中的强电子-声子耦合
Strong electron–phonon coupling in magic-angle twisted bilayer graphene
『Abstract』The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest . However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms , the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate . These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.
评价
39. STK19定位TFIIH进行无细胞转录偶联DNA修复
STK19 positions TFIIH for cell-free transcription-coupled DNA repair
『Abstract』In transcription-coupled nucleotide excision repair (TC-NER), stalled RNA polymerase II (RNA Pol II) binds CSB and CRL4 , which cooperate with UVSSA and ELOF1 to recruit TFIIH. To explore the mechanism of TC-NER, we recapitulated this reaction in vitro . When a plasmid containing a site-specific lesion is transcribed in frog egg extract, error-free repair is observed that depends on CSB, CRL4 , UVSSA, and ELOF1. Repair also requires STK19, a factor previously implicated in transcription recovery after UV exposure. A 1.9-Å cryo-electron microscopy structure shows that STK19 binds the TC-NER complex through CSA and the RPB1 subunit of RNA Pol II. Furthermore, AlphaFold predicts that STK19 interacts with the XPD subunit of TFIIH, and disrupting this interface impairs cell-free repair. Molecular modeling suggests that STK19 positions TFIIH ahead of RNA Pol II for lesion verification. Our analysis of cell-free TC-NER suggests that STK19 couples RNA Pol II stalling to downstream repair events.
评价
40. 确定衰老在各种细胞类型中的具体功能作用
Identifying specific functional roles for senescence across cell types
『Abstract』Cellular senescence plays critical roles in aging, regeneration, and disease; yet, the ability to discern its contributions across various cell types to these biological processes remains limited. In this study, we generated an in vivo genetic toolbox consisting of three p16-related intersectional genetic systems, enabling pulse-chase tracing (Sn-pTracer), Cre-based tracing and ablation (Sn-cTracer), and gene manipulation combined with tracing (Sn-gTracer) of defined p16 cell types. Using liver injury and repair as an example, we found that macrophages and endothelial cells (ECs) represent distinct senescent cell populations with different fates and functions during liver fibrosis and repair. Notably, clearance of p16 macrophages significantly mitigates hepatocellular damage, whereas eliminating p16 ECs aggravates liver injury. Additionally, targeted reprogramming of p16 ECs through Kdr overexpression markedly reduces liver fibrosis. This study illuminates the functional diversity of p16 cells and offers insights for developing cell-type-specific senolytic therapies in the future.
评价
41. IRGQ介导的MHC I类质量控制中的自噬促进肿瘤免疫逃逸
IRGQ-mediated autophagy in MHC class I quality control promotes tumor immune evasion
『Abstract』The autophagy-lysosome system directs the degradation of a wide variety of cargo and is also involved in tumor progression. Here, we show that the immunity-related GTPase family Q protein (IRGQ), an uncharacterized protein to date, acts in the quality control of major histocompatibility complex class I (MHC class I) molecules. IRGQ directs misfolded MHC class I toward lysosomal degradation through its binding mode to GABARAPL2 and LC3B. In the absence of IRGQ, free MHC class I heavy chains do not only accumulate in the cell but are also transported to the cell surface, thereby promoting an immune response. Mice and human patients suffering from hepatocellular carcinoma show improved survival rates with reduced IRGQ levels due to increased reactivity of CD8+ T cells toward IRGQ knockout tumor cells. Thus, we reveal IRGQ as a regulator of MHC class I quality control, mediating tumor immune evasion.
评价
42. 多参数成像揭示了头颈部癌症中与临床相关的癌细胞-间质相互作用动力学
Multiparameter imaging reveals clinically relevant cancer cell-stroma interaction dynamics in head and neck cancer
『Abstract』Epithelial tumors are characterized by abundant inter- and intra-tumor heterogeneity, which complicates diagnostics and treatment. The contribution of cancer-stroma interactions to this heterogeneity is poorly understood. Here, we report a paradigm to quantify phenotypic diversity in head and neck squamous cell carcinoma (HNSCC) with single-cell resolution. By combining cell-state markers with morphological features, we identify phenotypic signatures that correlate with clinical features, including metastasis and recurrence. Integration of tumor and stromal signatures reveals that partial epithelial-mesenchymal transition (pEMT) renders disease outcome highly sensitive to stromal composition, generating a strong prognostic and predictive signature. Spatial transcriptomics and subsequent analyses of cancer spheroid dynamics identify the cancer-associated fibroblast-pEMT axis as a nexus for intercompartmental signaling that reprograms pEMT cells into an invasive phenotype. Taken together, we establish a paradigm to identify clinically relevant tumor phenotypes and discover a cell-state-dependent interplay between stromal and epithelial compartments that drives cancer aggression.
评价
43. IRE1α沉默dsRNA,以阻止三阴性乳腺癌中紫杉烷诱导的细胞焦亡
IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer
『Abstract』Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53 TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1 immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.
评价
44. 人类胰腺癌中重复的RNA对细胞可塑性的破坏
Disruption of cellular plasticity by repeat RNAs in human pancreatic cancer
『Abstract』Aberrant expression of repeat RNAs in pancreatic ductal adenocarcinoma (PDAC) mimics viral-like responses with implications on tumor cell state and the response of the surrounding microenvironment. To better understand the relationship of repeat RNAs in human PDAC, we performed spatial molecular imaging at single-cell resolution in 46 primary tumors, revealing correlations of high repeat RNA expression with alterations in epithelial state in PDAC cells and myofibroblast phenotype in cancer-associated fibroblasts (CAFs). This loss of cellular identity is observed with dosing of extracellular vesicles (EVs) and individual repeat RNAs of PDAC and CAF cell culture models pointing to cell-cell intercommunication of these viral-like elements. Differences in PDAC and CAF responses are driven by distinct innate immune signaling through interferon regulatory factor 3 (IRF3). The cell-context-specific viral-like responses to repeat RNAs provide a mechanism for modulation of cellular plasticity in diverse cell types in the PDAC microenvironment.
评价
45. 融合肽预处理(免疫)的猴HIV感染猕猴(模型)体内存在大量广谱的HIV-1中和抗体
Potent and broad HIV-1 neutralization in fusion peptide-primed SHIV-infected macaques
『Abstract』An antibody-based HIV-1 vaccine will require the induction of potent cross-reactive HIV-1-neutralizing responses. To demonstrate feasibility toward this goal, we combined vaccination targeting the fusion-peptide site of vulnerability with infection by simian-human immunodeficiency virus (SHIV). In four macaques with vaccine-induced neutralizing responses, SHIV infection boosted plasma neutralization to 45%–77% breadth (geometric mean 50% inhibitory dilution [ID 50 ] ∼100) on a 208-strain panel. Molecular dissection of these responses by antibody isolation and cryo-electron microscopy (cryo-EM) structure determination revealed 15 of 16 antibody lineages with cross-clade neutralization to be directed toward the fusion-peptide site of vulnerability. In each macaque, isolated antibodies from memory B cells recapitulated the plasma-neutralizing response, with fusion-peptide-binding antibodies reaching breadths of 40%–60% (50% inhibitory concentration [IC 50 ] < 50 μg/mL) and total lineage-concentrations estimates of 50–200 μg/mL. Longitudinal mapping indicated that these responses arose prior to SHIV infection. Collectively, these results provide in vivo molecular examples for one to a few B cell lineages affording potent, broadly neutralizing plasma responses.
评价
46. 神经元活动的多尺度组织统一了脑功能的尺度依赖理论
Multiscale organization of neuronal activity unifies scale-dependent theories of brain function
『Abstract』Brain recordings collected at different resolutions support distinct signatures of neural coding, leading to scale-dependent theories of brain function. Here, we show that these disparate signatures emerge from a heavy-tailed, multiscale functional organization of neuronal activity observed across calcium-imaging recordings collected from the whole brains of zebrafish and C. elegans as well as from sensory regions in Drosophila , mice, and macaques. Network simulations demonstrate that this conserved hierarchical structure enhances information processing. Finally, we find that this organization is maintained despite significant cross-scale reconfiguration of cellular coordination during behavior. Our findings suggest that this nonlinear organization of neuronal activity is a universal principle conserved for its ability to adaptively link behavior to neural dynamics across multiple spatiotemporal scales while balancing functional resiliency and information processing efficiency.
评价
47. CRISPR相关腺苷脱氨酶Cad1将ATP转化为ITP,以提供抗病毒免疫力
The CRISPR-associated adenosine deaminase Cad1 converts ATP to ITP to provide antiviral immunity
『Abstract』Type III CRISPR systems provide immunity against genetic invaders through the production of cyclic oligo-adenylate (cA n ) molecules that activate effector proteins that contain CRISPR-associated Rossman fold (CARF) domains. Here, we characterized the function and structure of an effector in which the CARF domain is fused to an adenosine deaminase domain, CRISPR-associated adenosine deaminase 1 (Cad1). We show that upon binding of cA 4 or cA 6 to its CARF domain, Cad1 converts ATP to ITP, both in vivo and in vitro . Cryoelectron microscopy (cryo-EM) structural studies on full-length Cad1 reveal an hexameric assembly composed of a trimer of dimers, with bound ATP at inter-domain sites required for activity and ATP/ITP within deaminase active sites. Upon synthesis of cA n during phage infection, Cad1 activation leads to a growth arrest of the host that prevents viral propagation. Our findings reveal that CRISPR-Cas systems employ a wide range of molecular mechanisms beyond nucleic acid degradation to provide adaptive immunity in prokaryotes.
评价
48. 结构导向发现胆汁酸衍生物,用于治疗肝脏疾病,而不会引起瘙痒
Structure-guided discovery of bile acid derivatives for treating liver diseases without causing itch
『Abstract』Chronic itch is a debilitating symptom profoundly impacting the quality of life in patients with liver diseases like cholestasis. Activation of the human G-protein coupled receptor, MRGPRX4 (hX4), by bile acids (BAs) is implicated in promoting cholestasis itch. However, the detailed underlying mechanisms remain elusive. Here, we identified 3-sulfated BAs that are elevated in cholestatic patients with itch symptoms. We solved the cryo-EM structure of hX4-Gq in a complex with 3-phosphated deoxycholic acid (DCA-3P), a mimic of the endogenous 3-sulfated deoxycholic acid (DCA-3S). This structure revealed an unprecedented ligand-binding pocket in MRGPR family proteins, highlighting the crucial role of the 3-hydroxyl (3-OH) group on BAs in activating hX4. Guided by this structural information, we designed and developed compound 7 (C7), a BA derivative lacking the 3-OH. Notably, C7 effectively alleviates hepatic injury and fibrosis in liver disease models while significantly mitigating the itch side effects.
评价
49. 针对心脏纤维化的多尺度药物筛选将MD2确定为治疗靶点
Multiscale drug screening for cardiac fibrosis identifies MD2 as a therapeutic target
『Abstract』Cardiac fibrosis impairs cardiac function, but no effective clinical therapies exist. To address this unmet need, we employed a high-throughput screening for antifibrotic compounds using human induced pluripotent stem cell (iPSC)-derived cardiac fibroblasts (CFs). Counter-screening of the initial candidates using iPSC-derived cardiomyocytes and iPSC-derived endothelial cells excluded hits with cardiotoxicity. This screening process identified artesunate as the lead compound. Following profibrotic stimuli, artesunate inhibited proliferation, migration, and contraction in human primary CFs, reduced collagen deposition, and improved contractile function in 3D-engineered heart tissues. Artesunate also attenuated cardiac fibrosis and improved cardiac function in heart failure mouse models. Mechanistically, artesunate targeted myeloid differentiation factor 2 (MD2) and inhibited MD2/Toll-like receptor 4 (TLR4) signaling pathway, alleviating fibrotic gene expression in CFs. Our study leverages multiscale drug screening that integrates a human iPSC platform, tissue engineering, animal models, in silico simulations, and multiomics to identify MD2 as a therapeutic target for cardiac fibrosis.
评价
50. 基于TRIM21的分子胶和PROTAC降解剂对多聚蛋白的选择性降解
Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders
『Abstract』Targeted protein degradation (TPD) utilizes molecular glues or proteolysis-targeting chimeras (PROTACs) to eliminate disease-causing proteins by promoting their interaction with E3 ubiquitin ligases. Current TPD approaches are limited by reliance on a small number of constitutively active E3 ubiquitin ligases. Here, we report that ( S )-ACE-OH, a metabolite of the antipsychotic drug acepromazine, acts as a molecular glue to induce an interaction between the E3 ubiquitin ligase TRIM21 and the nucleoporin NUP98, leading to the degradation of nuclear pore proteins and disruption of nucleocytoplasmic trafficking. Functionalization of acepromazine into PROTACs enabled selective degradation of multimeric proteins, such as those within biomolecular condensates, while sparing monomeric proteins. This selectivity is consistent with the requirement of substrate-induced clustering for TRIM21 activation. As aberrant protein assemblies cause diseases such as autoimmunity, neurodegeneration, and cancer, our findings highlight the potential of TRIM21-based multimer-selective degraders as a strategy to tackle the direct causes of these diseases.
评价
51. STK19在转录偶联的DNA修复过程中促进病变停滞的RNAPII的清除
STK19 facilitates the clearance of lesion-stalled RNAPII during transcription-coupled DNA repair
『Abstract』Transcription-coupled DNA repair (TCR) removes bulky DNA lesions impeding RNA polymerase II (RNAPII) transcription. Recent studies have outlined the stepwise assembly of TCR factors CSB, CSA, UVSSA, and transcription factor IIH (TFIIH) around lesion-stalled RNAPII. However, the mechanism and factors required for the transition to downstream repair steps, including RNAPII removal to provide repair proteins access to the DNA lesion, remain unclear. Here, we identify STK19 as a TCR factor facilitating this transition. Loss of STK19 does not impact initial TCR complex assembly or RNAPII ubiquitylation but delays lesion-stalled RNAPII clearance, thereby interfering with the downstream repair reaction. Cryoelectron microscopy (cryo-EM) and mutational analysis reveal that STK19 associates with the TCR complex, positioning itself between RNAPII, UVSSA, and CSA. The structural insights and molecular modeling suggest that STK19 positions the ATPase subunits of TFIIH onto DNA in front of RNAPII. Together, these findings provide new insights into the factors and mechanisms required for TCR.
评价
52. 一种对表位多样化具有抵抗力的强效泛沙巴病毒中和抗体
A potent pan-sarbecovirus neutralizing antibody resilient to epitope diversification
『Abstract』Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution has resulted in viral escape from clinically authorized monoclonal antibodies (mAbs), creating a need for mAbs that are resilient to epitope diversification. Broadly neutralizing coronavirus mAbs that are sufficiently potent for clinical development and retain activity despite viral evolution remain elusive. We identified a human mAb, designated VIR-7229, which targets the viral receptor-binding motif (RBM) with unprecedented cross-reactivity to all sarbecovirus clades, including non-ACE2-utilizing bat sarbecoviruses, while potently neutralizing SARS-CoV-2 variants since 2019, including the recent EG.5, BA.2.86, and JN.1. VIR-7229 tolerates extraordinary epitope variability, partly attributed to its high binding affinity, receptor molecular mimicry, and interactions with RBM backbone atoms. Consequently, VIR-7229 features a high barrier for selection of escape mutants, which are rare and associated with reduced viral fitness, underscoring its potential to be resilient to future viral evolution. VIR-7229 is a strong candidate to become a next-generation medicine.
评价